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Non-equilibrium molecular-dynamics measurement of the Leslie
coefficients of a Gay–Berne nematic liquid crystal
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{LMAM, CCSE and School of Mathematical Science, Peking University, Beijing 100871, China

{Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,

Hong Kong, China

(Received 12 December 2006; in final form 28 April 2007; accepted 1 June 2007 )

Using non-equilibrium molecular-dynamics (MD) simulations, we have measured the six
Leslie coefficients of a nematic liquid crystal composed of molecules interacting via the Gay–
Berne potential. In the presence of a simple shear flow, an alignment field is applied to control
the molecular orientation and a uniform director is stabilized in the central region of the
channel in which the liquid crystal is confined and sheared. With the director tuned by
varying the applied field, a number of orientational states are stabilized in the presence of the
shear flow and various viscous stress components are measured in these states of differently
oriented directors. The six Leslie coefficients ai are determined by interpreting the MD
measurement data for viscous stress according to the constitutive relations in the Ericksen–
Leslie–Parodi theory. Our measurement of the Leslie coefficients shows the Parodi relation
a2+a35a62a5 is well satisfied. Given the values of the Leslie coefficients, liquid crystal
orientations are evaluated for different alignment fields and shear rates, and then compared
with those directly measured in MD simulations, demonstrating a quantitative agreement.
Our simulation results show that in the Gay–Berne nematic liquid crystal, the viscous stress
and the coupling between orientation and flow are well described by the Ericksen–Leslie–
Parodi theory.

1. Introduction

Nematic liquid crystals (LCs) are liquids because they

have no translational long-range order of molecules.

However, they have long-range orientational order and

therefore possess many special properties, from orienta-

tional elasticity to anisotropic viscosity. A continuum

theory of elasticity has been developed by Oseen [1],

Zocher [2] and Frank [3], followed by a theory of

nematodynamics developed by Ericksen [4], Leslie [5]

and Parodi [6]. In the Ericksen–Leslie–Parodi (ELP)

theory, there are six viscosities called the Leslie

coefficients with a constraint called the Parodi relation.

The Leslie coefficients describe the anisotropic entropy

production in LC flows and the interference of the

dissipative processes associated with the translational

and orientational degrees of freedom [7]. Theoretical

modelling for the nematic LC viscosities has also been

developed [8–13].

Molecular-dynamics (MD) simulations [14] have

proved to be instrumental in the study of LC viscosities.

Baalss and Hess [15] carried out non-equilibrium MD

simulations for a perfectly ordered nematic LC com-

posed of ‘Lennard–Jones ellipsoids’ with a fixed

orientation (Maier–Saupe order parameter s251) and

measured the three Miesowicz viscosities [16] g1, g2 and

g3 and the two Leslie coefficients c1 and c2. Ehrentraut

and Hess [17] then used the affine transformation model

to study the viscosities for nematic LCs of imperfect

order (s,1). Bennett et al. [18] studied the viscous

behaviour of a perfectly ordered nematic LC composed

of molecules of fixed orientation and interacting via the

Gay–Berne potential [19], which is more realistic and

has been widely used to model the intermolecular

interaction for nematic LCs. Using the Gay–Berne

potential, Bennettt and Hess [20] carried out non-

equilibrium MD simulations to investigate the beha-

viour of the Miesowicz, Helfrich and Leslie viscosities as

functions of density and temperature. According to the

Green–Kubo theory of statistical physics, transport

coefficients can be measured from various fluctuations

in equilibrium. Sarman and Evans [21] derived the

Green–Kubo relations for the viscosity coefficients of

nematic LCs. Using the Gay–Berne potential, they

carried out both equilibrium and non-equilibrium MD

simulations, showing that the Green–Kubo results agree*Corresponding author. Email: maqian@ust.hk
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well with those measured in non-equilibrium MD

simulations. Sarman [22] then devised a Gaussian

constraint algorithm that makes the angular velocity

of the director a constant of motion. This algorithm can

be used to fix the orientation of the director, necessi-

tated by equilibrium MD simulations in small systems.

Using the Gay–Berne potential, Smondyrev et al. [23]

also carried out equilibrium MD simulations to measure

the viscosities according to Kubo-like formulas and

investigated their temperature dependence. With the

director fixed by the constraint algorithm at different

angles relative to the stream lines, Sarman [24] carried

out non-equilibrium MD simulations of LC shear flow

using the Gay–Berne potential, and measured the shear

and rotational viscosities in a prolate nematic phase.

Sarman [25] also calculated the Miesowicz viscosities of

a variant of the Gay–Berne fluid as a function of

temperature, first evaluated from the Green–Kubo re-

lations in equilibrium and then cross-checked by

performing shear flow simulations. Zakharov et al.

[26] investigated the rotational viscosity coefficient and

its relation with the rotational diffusion coefficient by a

combination of statistical mechanical approaches and

MD simulations. There is fairly extensive literature on

the experimental measurements and studies of the LC

viscosities. The complete set of the six Leslie coefficients

of methoxybenzilidene butylanaline (MBBA) was re-

ported by Kneppe et al. [27]. The Leslie coefficients of

two high birefringence LC mixtures, E7 and UCF-2, were

estimated based on the MBBA data by Wang et al. [28].

In this paper we carry out non-equilibrium MD

simulations to measure the six Leslie coefficients ai for a

nematic LC modelled by the Gay–Berne intermolecular

potential. In the presence of a simple shear flow, an

alignment field is applied to control the LC director and

various viscous stress components are measured in a

series of selected orientational states with different

directors. The Leslie coefficients are determined by

interpreting the MD measurement data for viscous

stress according to the constitutive relations in the ELP

theory. Our measurement of the Leslie coefficients

shows the Parodi relation a2+a35a62a5 is well satisfied.

Given the values of the Leslie coefficients, a theoretical

prediction of the LC orientation can be made in the

presence of both the alignment field and shear flow, and

a comparison with that directly measured in MD

simulations exhibits quantitative agreement. Our simu-

lation results show that in the Gay–Berne nematic LC,

the viscous stress and the coupling between orientation

and flow are well described by the ELP theory.

We want to point out that in measuring the LC

viscosities, the present approach is similar to that in [20]

in that a number of orientational states are stabilized by

applying the alignment field and various viscous stress

components are measured to determine the LC viscos-

ities. In fact, in [20] there are six viscosities measured:

three Miesowicz viscosities, one Helfrich viscosity and

two Leslie (rotational) viscosities, which are equivalent

to the six Leslie coefficients determined in the present

work. Nevertheless, in [20] the stress measurement

involves four orientational states only, three of which

are for measuring the Miesowicz viscosities and Leslie

(rotational) viscosities, and one of which is needed for

measuring the Helfrich viscosity. In fact, in most of the

earlier works only a few orientational states are used in

determining various LC viscosities. In the present work,

we use nearly 20 orientational states for determining

one set of values for the six Leslie coefficients. By

measuring the orientational dependence of various

viscous stress components from many orientational

states, we provide a direct verification of the continuum

constitutive relations. It is through this verification that

the values of the Leslie coefficients are determined. We

want to point out that although our scheme for the

measurement of the Leslie coefficients is presented using

one special parametrization of the Gay–Berne potential,

it can be applied to other parametrizations as well.

The paper is organized as follows. In section 2, we

present the continuum theoretical considerations on how

to determine the Leslie coefficients from the measurement

of various viscous stress components in a set of selected

orientational states and how to stabilize these orienta-

tional states by the application of alignment field. In

section 3 we give the details of the MD simulations. In

section 4 we present the numerical results for the Leslie

coefficients and show the self-consistency of our results.

The paper is concluded in section 5.

2. Theoretical considerations

In the ELP theory of the continuum nematodynamics

[7], the viscous stress s9 in the regime of weak flow is

expressed by

s0ab~a1nanbnmnnAmnza4Aabza5nanmAmb

za6nbnmAmaza2naNbza3nbNa,
ð1Þ

and the molecular field h is given by

hm~c1Nmzc2naAma, ð2Þ

where the unit vector n is the director, A51/2(,v+(,v)T)

is the symmetric part of the velocity gradient tensor ,v

and the vector N5dn/dt2v6n represents the rate of

change of the director with respect to the background

fluid, with v5,6v/2 being the antisymmetric part of the

velocity gradient. The six Leslie coefficients ai are linked

by the Parodi relation a2+a35a62a5, and the coefficients
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c1 and c2 are given by c15a32a2 and c25a2+a3,

respectively. To obtain the constitutive relations (1) and

(2), each contribution to the entropy production is written

as the product of a ‘flux’ and its conjugate ‘force’, and

each force is expressed as a linear function of the fluxes

(i.e. linear dissipative response).

To outline the scheme for the measurement of the

Leslie coefficients, we consider a Couette flow of LCs

with a uniform director n5(cos h cos w, cos h sin w, sin h).

The fluid velocity v is given by vx~
:c z{H=2ð Þ, vy50 and

vz50, where :c~Lvx=Lz is the shear rate and H/2 is the z

coordinate of the midplane at which vx50. For special

configurations of either w50 or h50, equation (1) can

be further simplified. Below we call these configurations

the XZ (with w50) and XY (with h50) configurations,

respectively. For the XY configurations with n5(cos w,

sin w, 0), we have

s0xz

�:c~
1

2
a4z

1

2
a5za2ð Þcos2 w, ð3Þ

s0zx

�:c~
1

2
a4z

1

2
a6za3ð Þcos2 w, ð4Þ

and for the XZ configurations with n5(cos h, 0, sin h),

we have

s0zx

�:c~a1 cos2 h sin2 hz
1

2
a6za3ð Þcos2 h

z
1

2
a5{a2ð Þsin2 hz

1

2
a4,

ð5Þ

s0xx{s0zz

� ��:c~a1 cos3 h sin h{sin3 h cos h
� �

{ a2za3ð Þcos h sin h,
ð6Þ

s0zx{s0xz

� ��:c~
1

2
a6{a5ð Þ cos2 h{sin2 h

� �

z
1

2
a3{a2ð Þ cos2 hzsin2 h

� �
:

ð7Þ

Our scheme for measuring the six Leslie coefficients

in MD simulations may be described as follows.

(i) We stabilize, one by one, a series of the XY and

XZ configurations of different directors.

(ii) We measure various viscous stress components

and the shear rate in each steady configuration,

obtaining those s0ab

.
:c combinations needed in the

left-hand side of equations (3)–(7).

(iii) We let the MD data collected for s0ab

.
:c fit

equations (4)–(7), using the w and h values

measured directly in the steady states.

The values of the six ai can be determined through this

fitting procedure. While equation (3) is not needed in

step (iii), which involves equations (4)–(7), it can still be

used as an additional test of our measured results. We

emphasize that the Parodi relation is not used in

equation (1), from which equations (3)–(7) follow, in

which all of the six coefficients are used. Therefore, it

can be checked independently by the measured values of

the Leslie coefficients. More details are presented in

section 4.

The above fitting procedure needs a series of the XY

and XZ configurations of different directors (i.e.

different w and h values). To stabilize these orientational

states in the presence of a Couette flow, an alignment

field is applied to the system, with the interaction energy

density given by UB~{b bBB:n
� �2

�
2, where b measures

the strength of the alignment and bBB is the unit vector in

the direction of the field. Using the ELP theory, the

relation between the applied field and the stabilized

director can be derived.

In a system with a uniform director, there is no

Frank–Oseen elastic free energy and the balance

between the viscous molecular field and the molecular

field hB~{LUB=Ln~b bBB:n
� �

bBB due to the applied field

can be expressed as

c1Nzc2n:A~hBzln, ð8Þ

where l is the Lagrange multiplier for n251.

According to equation (8), when the field is parallel to

the xz plane, i.e. bBB~ bBBx, 0, bBBz

� �
, n5(cos h, 0, sin h) is a

solution with h determined by

PzQ cos 2hð ÞzR sin 2hð Þ~0, ð9Þ

where P~{c1
:c, Q~2bbBBx

bBBz{c2
:c and R~b bBB2

z{
bBB2

x

� �
.

If cos h50, then 2bbBBx
bBBz~{ c1{c2ð Þ:c. Away from

cos h50, equation (9) becomes

P{Qð Þtan2 hz2R tan hz PzQð Þ~0, ð10Þ

which is solvable because D~4R2{4 P{Qð Þ PzQð Þ~

4 b2 bBB2
xz
bBB2

z

� �2

{4bbBBx
bBBzc2

:cz c2
2{c2

1

� �:c2

� �
w0 with c2,0

and |c2|.c1 for rodlike nematic LCs.

To stabilize the XY configurations with n5(cos w,

sin w, 0), bBB~ bBBx, bBBy, bBBz

� �
satisfies

bBBxny{bBBynx

� �
bBB:n
� �

~0,

2bbBBy
bBBz sin w~ c1zc2ð Þ:c{2bbBBx

bBBz

h i
cos w:

ð11Þ

That is, bBBx~c cos w, bBBy~c sin w and

bBBz~
c1zc2ð Þ:c cos w

2bc
,
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with c determined by bBB
2
~1. Here By/Bx5tan w indicates

that the director is parallel to the projection of bBB on the

xy plane. Physically, when c2?2c1, the flow-induced

alignment in the absence of the applied field is away

from the xy plane. Consequently, a non-zero bBBz is

needed to stabilize n in the xy plane. This has been

quantitatively verified in our simulations.

3. Molecular dynamics simulations

A nematic LC is confined by two planar solid walls

parallel to the xy plane (see figure 1), with the fluid–

solid boundaries defined by z50 and H. Periodic

boundary conditions are imposed in the x and y

directions. The interaction between LC molecules is

modelled by the Gay–Berne potential [19]

UGB r, buu1, buu2ð Þ~4E brr, buu1, buu2ð Þ

s0

r{s brr, buu1, buu2ð Þzs0

	 
12

{
s0

r{s brr, buu1, buu2ð Þzs0

	 
6
" #

,
ð12Þ

where buu1 and buu2 are the unit vectors denoting the

orientations of two interacting molecules separated by

the position vector r~rbrr, with brr being the unit vector.

The energy and length parameters E brr, buu1, buu2ð Þ and

s brr, buu1, buu2ð Þ depend on the relative molecular orienta-

tion, giving the depth of the potential well and the

intermolecular distance at which U50, respectively. The

length parameter is given by

s brr, buu1, buu2ð Þ~s0 1{
x

2

brr:buu1zbrr:buu2ð Þ2

1zx buu1
:buu2ð Þ z

brr:buu1 {brr:buu2ð Þ2

1{x buu1
:buu2ð Þ

" #( ){1=2

,ð13Þ

where s0 is the length scale and x is the parameter

measuring the anisotropy of molecular shape: x5[(se/

ss)
221]/[(se/ss)

2+1], with se and ss being the end-to-end

and side-by-side separations of two anisotropic mole-

cules, respectively. The energy parameter is given by

E brr, buu1, buu2ð Þ~E0 E buu1, buu2ð Þ½ �n E0 brr, buu1, buu2ð Þ½ �m, ð14Þ

where E0 is the energy scale,

E buu1, buu2ð Þ~ 1{x2 buu1
:buu2ð Þ2

h i{1=2

ð15Þ

and

E0 brr, buu1, buu2ð Þ~1{
x0

2

brr:buu1zbrr:buu2ð Þ2

1zx0 buu1
:buu2ð Þz

brr:buu1{brr:buu2ð Þ2

1{x0 buu1
:buu2ð Þ

" #

: ð16Þ

Here x9 is the parameter measuring the anisotropy of

intermolecular interaction: x95[12(Ee/Es)
1/m]/[1+(Ee/Es)

1/m],

where Ee/Es is the ratio of the well depths for end-to-end and

side-by-side configurations.

The Gay–Berne potential needs four parameters (m, n,

se/ss, Ee/Es). The interaction between LC molecules is

modelled by Uff~U
1, 2, 3, 0:2ð Þ

GB (see [29]), with the energy

and length scales given by Eff5E0 and sff5s0. The wall

molecules are modelled to be spherical and the

interaction between a spherical wall molecule and an

anisotropic LC molecule is modelled by an analogy to

the Gay–Berne potential, Uwf~UGB r, 0, buuð Þ, where one

of the two unit vectors in UGB r, buu1, buu2ð Þ is replaced by

zero (buu1?0) for the spherical wall molecule while the

other is kept (buu2?buu) to denote the orientation of the LC

molecule. We use Ewf52E0 and swf51.2s0 as the energy

scale and length scales for Uwf, in which the four

parameters (m, n, se/ss, Ee/Es) are chosen to be (1, 2,

(31/3+3)/(31/3+1), 0.4) according to [30]. Throughout the

remainder of this paper, all of the physical quantities are

given in the MD reduced units defined in terms of E0, s0

and m.

To apply the alignment field, each LC molecule is put

in an orientation-dependent potential VB~{b0

bBB:buui

� �2

=2, where b0 measures the coupling strength.

Physically, this molecular parameter b0 is proportional

to the parameter b in the continuum field-induced

energy density UB~{b bBB:n
� �2

=2 used in section 2.

In our simulations, 6080 LC molecules are used for

the XZ configurations and 6300 molecules for the XY

configurations. The initial state of the LC is an fcc

Figure 1. A snapshot of the molecular positions and orienta-
tions taken from one of our MD simulations. The spheres
represent the wall molecules and the spheroids represent the
LC molecules. The LC film is sheared by moving the two solid
walls in opposite directions.
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lattice with the number density rf~0:3s{3
0 . The initial

orientation of each LC molecule is buui~ cos 600,ð
0, sin 600Þ in an XZ configuration or buui~ cos 450,ð
sin 450, 0Þ in an XY configuration. The moment of

inertia is chosen to be 4ms2
0. Each of the two walls is

constructed by two [001] planes of an fcc lattice, with

each wall molecule attached to the lattice site by a

harmonic spring. The mean-squared displacement of

the wall molecule is controlled to obey the Lindemann

criterion. Each wall plane has 608 molecules with the

number density rw~0:4s{3
0 . The mass of the wall

molecule is set equal to the mass of the LC molecule m.

The potentials Uff and Uwf are both truncated at 3.8s0,

and the equations of motion are integrated using a

velocity Verlet algorithm with a time step

Dt~0:001
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2

0

�
E0

q
. The translational and rotational

temperatures of the LC are controlled using the

Langevin noises and so is the temperature of the wall.

These three temperatures are the same within statistical

error in our simulations. Owing to the joint alignment

effect of the applied field and shear flow, the

temperature we use is T52.5E0/kB, which is a little bit

higher than the nematic–isotropic phase transition point

for rf~0:3s{3
0 in the absence of flow or field [29]. The

Couette flow is generated by moving the top and

bottom walls at a constant speed Vw in the ¡x

directions, respectively. Steady states are obtained for

the XZ configurations with H533.25s0 and for the XY

configurations with H534.90s0.

In order to measure the variations of various physical

quantities in the z direction, the confined LC is divided

into many layers. Each layer extends in the x and y

directions and is of a small thickness Dz<1.5s0 in the z

direction. The shear rate
:
c is directly calculated from the

velocity profile. The viscous stress components needed

in our measurement of the Leslie coefficients are

evaluated from the time averages of the kinetic

momentum transfer rate and the intermolecular inter-

action contribution [15, 31]. The hydrostatic pressure

can be obtained from the three diagonal components of

the stress tensor. The (second-)order parameter s2 is

evaluated as a function of z from the largest eigenvalue

of the tensorial order parameter

Q zð Þ~S
XN zð Þ

i~1

3buuibuui{Ið Þ=2N zð ÞT,

where N(z) is the number of particles in a particular

layer [7]. The fourth order parameter s4 is also measured

from the time average of the fourth Legendre poly-

nomial [32]. To focus on the central region of ideal

Couette flow, which is characterized by uniform

density, uniform director, uniform order parameters s2

and s4, constant shear rate and constant stress, we take
arithmetical averages in the central fluid region, which

is away from the confining walls by six bins (<9s0), to

obtain the fluid density rf, the director bnn, the order

parameters s2 and s4, the shear rate
:
c and the stress

components sxx, szz, szx, sxz. This avoids the undesired

boundary effects due to the sliding boundaries used in

our simulations. All of the quantities are measured by

time averaging over 46105 time steps following an

initial relaxation of 56105 time steps.

4. Results

We have carried out three sets of MD simulations using

three different shear rates 2Vw=H~0:066
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

�
ms2

0

q
,

0:044
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

�
ms2

0

q
and 0:022

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

�
ms2

0

q
. (These shear rates

are externally controlled by the simulation setup. The

shear rates measured in the central Couette-flow region

may be slightly different due to the boundary effects.)
No slip is detected at the solid surface due to the small

shear rates and the strong wall–fluid interaction. In each

set of a particular shear rate, we have generated nine

steady XZ configurations plus ten steady XY config-

urations. Each steady configuration displays a Couette

flow (see figure 2) in the nematic phase, with the order

parameter s2 distributed around 0.75 (see figure 3) and

the number density rf around 0:295s{3
0 (see figure 4) in

the central region of the LC. Various stress components

are measured in these states and all six Leslie

coefficients are determined according to the fitting

procedure described in section 2.

To tune the steady-state director in the Couette flow,

we vary the field direction bBB, with the coupling constant

Figure 2. Scaled tangential velocity vx/Vw plotted as a
function of z: (a) in the XZ configurations, with the
corresponding values of hB listed in the inset; (b) in the XY
configurations, with the corresponding values of wB listed in
the inset.
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b0 in VB fixed at 6.25E0, which corresponds to the

coupling constant b~rf sb0~1:38E0

�
s3

0 in UB. The

relations between the applied field and the stabilized

director in the shear flow are expressed by equations (9)

and (11). To stabilize the XZ configurations, we use
bBB~ cos hB, 0, sin hBð Þ with hB50u, 10u, 20u, 30u, 45u, 60u,
70u, 80u and 90u. Figure 5 (a) shows that in steady

states, the average director is indeed parallel to the xz

plane as its y component ny is negligibly small. The tilt

angle h of n5(cos h, 0, sin h) is plotted as a function of z

in figure 5 (b), showing a uniform director in the central

region of the fluid.

To stabilize the XY configurations, we use
bBB~c cos wB, sin wB, a cos wBð Þ (in which c is for normal-

ization) with wB510u, 20u, 30u, 40u, 45u, 50u, 60u, 70u,
80u and 90u. Here a is a small, negative parameter,

approximately given by c1zc2ð Þ :c=2b. Before we have

the values for c1 and c2, a is treated as an adjustable

parameter, optimized to make the director parallel to

the xy plane (see figure 5 (c)). The azimuthal angle w of

n5(cos w, sin w, 0) is plotted as a function of z in

figure 5 (d), showing a uniform director in the central

region. It is seen that the average azimuthal angle

measured from the director in the central region agrees

well with the azimuthal angle wB of the applied field, as

predicted by equation (11).

The steady XZ and XY configurations all possess a

central region of ideal Couette flow with uniform

director, constant shear rate, and constant stress. In

addition, in that region they have the same order

parameters (s2 and s4), number density and tempera-

ture, and hence correspond to the same orientationally

ordered state, for which we can determine the six Leslie

coefficients from the measured viscous stress compo-

nents according to the fitting procedure outlined in

section 2 as follows.

(a) According to equation (4), the variation of s0zx

�:c
with w in the XY configurations can be used to

determine the values of a4 and a6+a3 (see

figure 6 (a)).

(b) According to equation (5), the variation of s0zx

�:c
with h in the XZ configurations can be used to

determine the values of a1 and a52a2 (see

figure 6 (b)). Here the values of a4 and a6+a3

determined in part (a) are needed.

(c) According to equation (6), the variation of

s0xx{s0zz

� ��:c with h in the XZ configurations can

be used to determine the value of a2+a3 (see

figure 6 (c)). Here the value of a1 determined in

part (b) is needed.

(d) According to equation (7), the variation of

s0zx{s0xz

� ��:c with h in the XZ configurations can

be used to determine the value of a32a2 (see

figure 6 (d)). Here the value of a62a5 is needed

and it can be obtained from a linear combination

of the values of a6+a3, a52a2 and a2+a3 already

determined in parts (a)–(c).

(e) With the six Leslie coefficients determined in (a)–

(d), we use their values (listed in table 1) to

evaluate s0xz

�:c as a function of nx5cos w in the XY

configurations according to equation (3). The

theoretical prediction so obtained can then be

compared with the corresponding data directly

Figure 3. Local order parameters s2 and s4, each plotted as a
function of z: (a) in the XZ configurations, with the
corresponding values of hB listed in the inset; (b) in the XY
configurations, with the corresponding values of wB listed in
the inset. Note that the relation s45s2[12(12s2)0.6], proposed
in [17], is satisfied here.

Figure 4. Local density rf plotted as a function of z: (a) in the
XZ configurations, with the corresponding values of hB listed
in the inset; (b) in the XY configurations, with the
corresponding values of wB listed in the inset.
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measured in MD simulations, showing good

agreement (see figure 7). Quantitatively, the range

for the variation of s0xz

�:c as a function of nx5cos w

is rather small, and hence the use of equation (3)

is left to this last step, where the comparison for

s0xz

�:c in the XY configurations is mainly to show

the self-consistency of our results.

(f) For the XZ configurations, the average tilt angle h
measured from the director in the central region

can be compared with that predicted by equa-

tion (9) as soon as the values of c15a32a2 and

c25a3+a2 are determined. The agreement is very

good (see figure 8), showing the self-consistency

of our scheme again.

We note that the Parodi relation a2+a35a62a5 is well

satisfied (see table 1). In addition, the signs of all of the

six Leslie coefficients are in accordance with those

measured for MBBA [27]. The three Miesowicz

viscosities g15(a3+a4+a6)/2, g25(2a2+a4+a5)/2 and

g35a4/2 are readily obtained from ai. Ehrentraut and

Hess [17] have formulated an affine transformation

model for ellipsoidal particles with axis ratio Q, for both

perfect and imperfect orders. They have shown that

each of the three relative Miesowicz viscosities g1/ḡ, g2/ḡ

and g3/ḡ, with ḡ5(g1+g2+g3)/3, can be expressed in terms

of Q and the order parameters s2 and s4. Substituting

the values of these relative viscosities and the order

parameters s2 and s4 into

g2{g1

gg
~

s2 Q2{Q{2
� �

1z 1
15

4zs4ð Þ Q{Q{1ð Þ2

and

g3

gg
~

1{ 1
15

3
7

s4z
25
7

s2{4
� �

Q{Q{1
� �2

1z 1
15

4zs4ð Þ Q{Q{1ð Þ2

derived in [17], we can deduce the value of Q. This has

been done using the values of (g22g1)/ḡ and g3/ḡ listed

in table 1 and those of s2 and s4 displayed in figure 3.

There is a total of three different values for (g22g1)/ḡ
and two for g3/ḡ, from which five different values of Q

are deduced, ranging from 2.984 to 3.246. The fact that

the values of Q so obtained are close to each other

shows the self-consistency of our scheme and results. It

is also interesting to note that these values of Q are very

close to 3.0, the value of the parameter se/ss in the Gay–

Berne potential Uff~U
1, 2, 3, 0:2ð Þ

GB used in our simula-

tions.

Figure 5. (a) The ny component of the director plotted as a function of z in the XZ configurations. (b) The tilt angle h of the
director plotted as a function of z in the XZ configurations. In both (a) and (b), the corresponding values of hB are listed in the inset.
(c) The nz component of the director plotted as a function of z in the XY configurations. (d) The azimuthal angle w of the director
plotted as a function of z in the XY configurations. In both (c) and (d), the corresponding values of wB are listed in the inset.
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5. Concluding remarks

We have carried out non-equilibrium MD simulations

of nematic LC flows. The six Leslie coefficients have

been determined through the stress measurement in a

set of orientational states. The validity of our results has

been checked using the Parodi relation and also the LC

orientation in the presence of both the alignment field

and shear flow. To extract the hydrodynamic informa-

tion out of the molecular motion, the shear rates 2Vw/H

used in the simulations were fairly large. Consequently,

to balance the strong flow alignment effect, a large

Figure 6. The fitting procedure in which the six Leslie coefficients are determined. The symbols denote the MD measurement data

collected in nine XZ configurations and ten XY configurations of 2Vw=H~0:044
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

�
ms2

0

q
. The lines represent the theoretical

predictions evaluated from equations (4), (5), (6) and (7), using the parameters listed in table 1 for 2Vw=H~0:044
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

�
ms2

0

q
. (a)

s0zx

�:
c in the XY configurations, plotted as a function of nx5cos w. The solid curve represents s0zx

�:
c~ 1

2
a4z

1
2

a6za3ð Þcos2 w~

2:097{1:435 cos2w. (b) s0zx

�:
c in the XZ configurations, plotted as a function of nx5cos h. The solid curve represents

s0zx

�:
c~a1 cos2 h sin2 hz 1

2
a6za3ð Þcos2 hz 1

2
a5{a2ð Þsin2 hz 1

2
a4~{6:716 cos2 h sin2 h{1:435 cos2 hz8:099 sin2 hz2:097. ( c )

s0xx{s0zz

� ��:
c in the XZ configurations, plotted as a function of nx5cos h . The solid curve represents

s0xx{s0zz

� ��:
c~a1 cos3 h sin h{sin3 h cos h

� �
{ a2za3ð Þcos h sin h~{6:716 cos3 h sin h{sin3 h cos h

� �
z9:695 cos h sin h. (d) s0zx{

�

s0xzÞ
�:
c in the XZ conf igura t ions , p lo t t ed as a func t ion of n x 5cos h . The so l id c urve repr es en t s

s0zx{s0xz

� ��:
c~ 1

2
a6{a5ð Þ cos2 h{sin2 h

� �
z 1

2
a3{a2ð Þ cos2 hzsin2 h

� �
~{4:687 cos2 h{sin2 h

� �
z3:710 cos2 hzsin2 h

� �
. Note that

the
:
c used here is the shear rate measured in the central Couette-flow region, slightly different from the value of 2Vw/H.

Table 1. The six Leslie coefficients determined from our non-equilibrium MD simulations of Couette flows with temperature
T52.5E0/kB, number density rf~0:295s{3

0 and order parameter s250.75 in the central region. The rotational viscosities c1 and c2

and the three relative Miesowicz viscosities g1/ḡ, g2/ḡ and g3/ḡ are also listed, with c15a32a2, c25a3+a2, g15(a3+a4+a6)/2,
g25(2a2+a4+a5)/2, g35a4/2 and ḡ5(g1+g2+g3)/3. The values of (a2+a3)/(a62a5) show that the Parodi relation a2+a35a62a5 is well
satisfied.

2Vw/H a1 a2 a3 a4 a5 a6

0.066 25.98¡0.22 28.59¡0.10 21.09¡0.10 4.36¡0.03 7.60¡0.24 22.00¡0.15
0.044 26.72¡0.25 28.56¡0.14 21.14¡0.14 4.19¡0.02 7.64¡0.28 21.73¡0.19
0.022 26.88¡0.54 28.56¡0.31 21.11¡0.31 4.20¡0.04 7.14¡0.62 21.68¡0.39

2Vw/H c1 c2 g1/ḡ g2/ḡ g3/ḡ (a2+a3)/(a62a5)

0.066 7.50 29.67 0.15 2.35 0.50 1.01
0.044 7.42 29.70 0.15 2.36 0.49 1.04
0.022 7.45 29.67 0.17 2.34 0.49 1.10
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coupling strength b056.25E0 has been used in the

potential VB~{b0
bBB:buui

� �2
�

2 for field-induced align-

ment (along the unit vector bBB). This induces a fairly

large nematic order parameter s250.75 at T52.5E0/kB,

which is a little bit higher than the nematic–isotropic

phase transition temperature [29]. We want to point out

that although the shear rates and field strength used in

the simulations are too large to be accessed in

experiments, our scheme presented for determining the

Leslie coefficients is still experimentally useful because

of the following scaling relation. According to equa-

tion (9) and (11), if the shear rate
:
c scales with the field

coupling strength b with
:
c=b kept constant, then the

same set of the orientational states can be stabilized as

well, but at much lower values of
:
c and b, thus accessible

in experiments. In the limit of small field and small

shear rate, the order parameter is only dependent on

temperature and so are the viscosities.
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